|x2+4x+4|−|2x+4|+1<12⇒(|x+2|−1)2<12⇒−1√2<|x+2|−1<1√2⇒−1√2+1<|x+2|<1+1√2
If x≥−2,
then −1√2−1<x<1√2−1
Possible integral value of x is 1
Number of integral solutions is 1
If x<−2,
then 1−1√2<−x−2<1+1√2
⇒−3+1√2>x>−3−1√2
Possible integral value of x is −3
Number of integral solutions is 1
∴ Total number of integral solutions is 2.