Number of integral values of a for which the equation cos2x−sinx+a=0 has roots when xϵ(0,π2) is
Open in App
Solution
cos2x−sinx+a=0 ⇒sin2x+sinx−(a+1)=0 ⇒sinx=−1±√4a+52 Since, for x∈(0,π2) 0<sinx<1 ⇒0<−1±√4a+5<2 ⇒1<4a+5<9 ⇒−1<a<1 Hence, number of integral values of a are 1(a=0)