Given that 1≤|5x+8|≤5
Using a≤|x|≤b where a,b>0
⇒−b≤x≤−a or a≤x≤b
Here we have,
1≤|5x+8|≤5⇒−5≤5x+8≤−1 or 1≤5x+8≤5
⇒−13≤5x≤−9 or −7≤5x≤−3
⇒−135≤x≤−95 or −75≤x≤−35
∴x∈[−135,−95]∪[−75,−35]
The integral values of x in above interval are {−2,−1}.
Thus there are two integral values of x satisfies the given inequality.