Given eqn of curve is
y=x1−x2
Also, given slope of tangent to curve is tanπ4=1
dydx=1.(1−x2)−(−2x)x(1−x2)2
⇒1=1+x2(1−x2)2
∴(1+x2)=(1−x2)2
x4−3x2=0
⇒x=0,−√3,√3
At x=0⇒y=0
At x=√3⇒y=−√32
At x=−√3⇒y=√32
Hence the points are : (0,0),(−√3,√32)and(√3,−√32).
Eqn of normal at (0,0) is
y−0=−1(x−0)
x+y=0
Eqn of normal at (√3,−√32) is
y+√32=−1(x−√3)
2y+2x=√3
Eqn of normal at (−√3,√32) is
y−√32=−1(x+√3)
2y+2x=−√3