The correct option is A 5
3x−5(x+1)3(x2+1)2=A(x+1)+B(x+1)2+C(x+1)3+Dx+E(x2+1)
+fx+9(x2+1)2
3x−5=A(x+1)2(x2+1)2+B(x+1)(x2+1)2
+C(x2+1)2+(Dx+E)(x2+1)(x+1)3+f(x)+g(x+1)3
So, there are 5 partial fractions.
Ax+1+B(x+1)2+C(x+1)3+Dx+E(x2+1)+f(x)+g(x2+1)2
5 Partial fractions