wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Number of points having position vector a^i+b^j+c^k, where a,b,c{1,2,3,4,5} such that 2a+3b+5c is divisible by 4 is

A
140
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
70
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
100
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is D 70
4m=2a+3b+5c=2a+(41)b+(4+1)c
4m=4k+(1)b+(1)c
Thus if a=1 and b is even then c is any number, and
if a1,b= odd, then c is any number.
Thus required number=1×2×5×4×3×5=70

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Counting Principle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon