Number of real roots of the equation (x2+2)2+8x2=6x(x2+2) is :
2
(x2+2)2+8x2=6x(x2+2)
⇒(x2+2)2−6x(x2+2)+8x2=0
⇒(x4+4x2+4)−6x3−12x+8x2=0
⇒x4−6x3+12x2−12x+4=0
⇒(x2−4x+2)(x2−2x+2)=0
⇒x2−4x+2=0 or x2−2x+2=0
Calculating the discriminant value for both the equations.
x2−4x+2=0
D=b2−4ac=16−4(1)(2)=8>0
x2−2x+2=0
D=b2−4ac=4−4(1)(2)=−4<0
Only x2−4x+2=0 has real roots.
Hence, the number of real roots are 2.