The correct options are
A Will be 2 in the interval [−π/2,π/2]
D Will be 4 in the interval [−π/2,π)
(tan2x+8tanx+15)(tan2x+8tanx+7)=33
Let tan2x+8tanx=p
(p+15)(p+7)=33
⇒p2+22p+72=0
⇒p=−18 (rejected) or p=−4
⇒tan2x+8tanx+4=0
so, tanx+4=±√12⇒tanx=−4+√12 or −4−√12