Number of roots of the equation cos2x+√3+12sinx−√34−1=0 which lie in the interval [−π,π] is-
Given equation is cos2x+√3+12sinx−√34−1=0
⇒1−sin2x+√3+12sinx−√34−1=0
⇒sin2x−√3+12sinx+√34=0
⇒4sin2x−2√3sinx−2sinx+√3=0
On solving we get sinx=12;√32
Hence, x=π6,5π6,π3,2π3