Number of solution(s) of equation sin3xcosx+sin2xcos2x+sinxcos3x=1∀x∈[0,2π] is :
A
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D0 sin3xcosx+sin2xcos2x+sinxcos3x=1 ⇒sinxcosx[sin2x+sinxcosx+cos2x]=1⇒12sin2x[1+12sin2x]=1 Let sin2x=t ∴t(2+t)=4⇒t2+2t−4=0⇒t=−2±2√52=−1±√5∴sin2x=−1−√5<−1(not possible) or sin2x=√5−1>1(not possible) Hence no solution