The domain: x∈(0,4)−{1}
1+log10(4−x10)log10x=log10(log10n10).1log10x
log10(x.4−x10)=log10(log10n10)
x2−4x+log10n=0
x=2±√4−log10n
So if 1<n<104,n≠103
equation has two different roots
x1=2+√4−log10n,x2=2−√4−log10n for all the values of x in the domain.