sinxcos3x+sin3xcos9x+sin9xcos27x=0
2sinxcosx2cos3xcosx+2sin3xcos3x2cos9xcos3x+2sin9xcos9x2cos27xcos9x=0
12(sin(3x−x)cos3xcosx+sin(9x−3x)cos9xcos3x+sin(27−9x)cos27xcos9x)=0
sin3xcosx−cos3xsinxcos3xcosx+sin9xcos3x−cos9xsin3xcos9xcos3x+sin27xcos9x−cos27xsin9xcos27xcos9x=0
⇒tan3x−tanx+tan9x−tan3x+tan27x−tan9x=0
⇒tan27x−tanx=0
⇒26x=nπ,n∈I
⇒x=nπ26
For x∈(0,π4)
⇒x=0,π26,2π26,3π26,4π26,5π26,6π26
Hence, number of solutions=6