The correct option is D infinite
We know that 1+tan2x=sec2x
So, given inequation is sec2x−secxtanx<0
=>secx(secx−tanx)<0
=>1cosx(1cosx−sinxcosx)<0
=>1−sinxcos2x<0
=>1−sinx1−sin2x<0
=>1−sinx(1−sinx)(1+sinx)<0
=>11+sinx<0
=>1+sinx>0
=>sinx>−1
There are many values of x which satisfy the inequation.