Number of solutions of the equation 2sinx−2√3cosx−√3tanx+3=0 where x∈[0,2π) is
Open in App
Solution
2sinx−2√3cosx−√3tanx+3=0 ⇒2[sinx−√3cosx]−√3cosx[sinx−√3cosx]=0 ⇒[sinx−√3cosx][2−√3cosx]=0 For sinx−√3cosx=0 ⇒tanx=√3 x=π3,4π3 For 2−√3cosx=0 ⇒cosx=√32 x=π6,11π6 So, x=π6,π3,4π3,11π6