wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Number of solutions of the equation 2+tan2x2tanxsin2x=0, where x[π,3π] is.

Open in App
Solution

2+tan2x2tanxsin2x=0
tan2x2tanx+1+1sin2x=0
(tanx1)2+sin2x+cos2x2sinxcosx=0 using 1=sin2x+cos2x
(tanx1)2+(sinxcosx)2=0
(tanx1)2=0 and (sinxcosx)2=0
tanx=1 and sinx=cosx
tanx=1
x=nπ+π4
For n=0x=π4
For n=1x=π+π4=3π4
For n=1x=π+π4=5π4
For n=2x=2π+π4=9π4
For x[π,3π]
Number of solutions={3π4,π4,5π4,9π4}=4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving Trigonometric Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon