The correct option is D 16
Given that
(2 cosec x−1)13+(cosec x−1)13=1
Converting everything into sin x
(2sin x−1)13+(1sin x−1)13=1
Let sin x=s
⇒(2−s)13+(1−s)13=s13....(i)
Cube both sides
⇒[(2−s)13+(1−s)13]3=(s13)3
⇒[(2−s)13]3+[(1−s)13]3+3(2−s)13(1−s)13((2−s)13+(1−s)13)=s [Since, (a+b)3=a3+b3+3ab(a+b)]
⇒2−s+1−s+3(2−s)13(1−s)13(s13)=s [From, equation (i)]
⇒3−2s +3(s(2−s)(1−s))13=s
⇒(s(2−s)(1−s))13=s−1
Again cube both the sides, we get
⇒(s(2−s)(1−s))13×3=(s−1)3
⇒(s(2−s)(1−s))−(s−1)3=0
⇒(1−s)(s(2−s)+(1−s)2)=0
⇒(1−s)(2s−s2+1+s2−2s)=0
⇒(1−s)=0
⇒s=1
⇒sin x=1
So, 1 solution in (−π,π), which is x=π2.
In general, k solutions exists in (−kπ,kπ)
∴ k=16