tan x + sec x = 2 cos x in [0, 2π]
i.e where x ∉(2x + 1) (∵ cos x is not defined)
i.e sin x + 1 = 2 cos2x
⇒ sin x + 1 = 2(1 − sin2x) (∵ sin2x + cos2x = 1)
i.e 2 sin2x + sin x − 1 = 0
i.e 2 sin2x + 2 sin x – sin x – 1 = 0
i.e 2 sin x (sin x + 1) −1 (sin x + 1) = 0
i.e (2 sin x − 1) (sin x + 1) = 0
i.e sin x = or sin x = −1
i.e for sin x =
we have x is I or II Quadrant
i.e x = and for sin x = −1
x = which is not possible
Hence, tan x + sec x = 2 cos x has 2 columns in [0, 2]
Hence, the correct answer is option C.