The correct option is B 2
|x−1|+|x−2|+|x−3|=7
critical points
x−1=0⇒x=1
x−2=0⇒x=2
x−3=0⇒x=3
On the basis of above points, we have Four regions
x<1, x∈[1,2], x∈(2,3], x>3
case-1, x<1
For x<1,
|x−1|=−(x−1), |x−2|=−(x−2), |x−3|=−(x−3)
Now equation will be :
−(x−1)−(x−2)−(x−3)=7
−3x+6=7
x=−13 Also −13<1
So,x=−13 ⋯(1)
case-2, x∈[1,2]
For x∈[1,2],
|x−1|=(x−1), |x−2|=−(x−2), |x−3|=−(x−3)
Now equation will be :
(x−1)−(x−2)−(x−3)=7
−x+4=7
x=−3 but −3∉[1,2]
So, x=ϕ ⋯(2)
case-3, x∈(2,3]
For x∈(2,3],
|x−1|=(x−1), |x−2|=(x−2), |x−3|=−(x−3)
Now equation will be :
(x−1)+(x−2)−(x−3)=7
x=7
x=7 but 7∉(2,3]
So, x=ϕ ⋯(3)
case-4, x>3
For x>3,
|x−1|=(x−1), |x−2|=(x−2), |x−3|=(x−3)
Now equation will be :
(x−1)+(x−2)+(x−3)=7
3x−6=7
x=133 Also 133>3
So, x=133 ⋯(4)
By (1)∪(2)∪(3)∪(4)
x={−13,133}