Giventheequation,√2secx+tanx=1⟶(1)⇒√2cosx+sinxcosx=1⇒√2+sinxcosx=1⇒√2+sinx=cosx⇒sinx−cosx=√2squaringbothsidesweget,⇒1−2sinxcosx=2⇒2sinxcosx=−1⇒sin2x=−1⇒2x=sin−1(−1)⇒2x=3π2,7π2⇒x=3π4,7π4forxϵ[0,4π]∵thevaluesofxliebetween[0,4π]thereforetheequation(1)hastwovalues.