The correct option is
A 2Given:
8x+27x12x+18x=76To find number of values of x
Sol: Let 2x=a,3x=b
So 8x=(23)x=(2x)3=a3 similarly 27x=b3
and 12x=(22.3)x=(2x)2.3x=a2b simialrly 18x=(2.32)x=2x.(3x)2=ab2
So the given problem becomes,
a3+b3a2b+ab2=76⟹(a+b)(a2–ab+b2)ab(a+b)=76⟹a2−ab+b2ab=76⟹6a2−6ab+6b2=7ab⟹6a2−13ab+6b2=0
As a+b≠0. Divide throughout by b2
⟹6(ab)2−13(ab)+6=0
Let ab=z
6z2−13z+6=0⟹(2z−3)(3z−2)=0⟹z=23,z=32
or ab=23 or 32
or (23)x=23 or 32
If (23)x=23⟹(23)x=(23)1⟹(23)x−1=1
and if (23)x=32⟹(23)x=(23)−1⟹(23)x+1=1
That means x can either be −1 or +1