2sin2x+sin22x=2⇒sin22x=2cos2x⇒4sin2xcos2x=2cos2x⇒cos2x=0 or 2sin2x=1
When cos2x=0
⇒x={−3π2,−π2,π2}
and when sin2x=12
⇒x={±π4,±3π4,±5π4}
∴x={−3π2,−5π4,−3π4,−π2,−π4,π4,π2,3π4,5π4}
For
sin2x+cos2x=tanx⇒2tanx+1−tan2x1+tan2x=tanx⇒tan3x+tan2x−tanx−1=0⇒(tan2x−1)(tanx+1)=0⇒tanx=−1,1⇒x={±π4,±3π4,±5π4}
∴ no of common solutions is 6