The correct options are
A 14C5 if each gets even number things (excluding 0)
C 17C5 if each gets odd number of things
Let person Pi get xi number of things such that
x1+x2+x3+x4+x5+x6=30
If xi is odd or xi=2λi+1, where λi≥0, then
2(λ1+λ2+λ3+λ4+λ5+λ6)+6=30
⇒λ1+λ2+λ3+λ4+λ5+λ6=12
Then number of soliutions is 12+6−1C6−1=17C5. If xi is even or xi
=2λp where λi≥1, then
2(λi+λ2+λ3+λ4+λ5+λ6)=30
⇒λi+λ2+λ3+λ4+λ5+λ6=15
Therefore, required number of ways is 15−1C6−1=14C5.