The correct options are
A 3(n/3C3)+(n3)3 if n=3k,kϵN
B 2((n−1)/3C3)+((n+2)/3C3)+(n−13)2(n+23), if n=3k+1,kϵN
C 2((n+1)/3C3)+((n−2)/3C3)+(n+13)2(n−23), if n=3k+2,kϵN
When n=3k, there are exactly n/3 integers of each type 3p,3p+1,3p+2.
Now, sum of three selected integers is divisible by 3. Then either all the integers are of the same type 3p,3p+1 or 3p+2 or one-one integer from each type.
Then number of selection ways is
n/3C3+n/3C3+n/3C3+(n/3C1)(n/3C1)(n/3C1)=3(n/3C3)+(n/3)3
If n=3k+1, then there are n−13 integers of the type 3p,3p+2, and n+23 integers of the type 3p+1. Then number of selection ways is
2((n−1)/3C3)+((n+2)/3C3)+(n−13)2(n+23)
When n=3k+2, then there are n+13 integers of the type 3p,3p+2, and
n−23 integers of the type 3p+1. Then number of
selection ways is
2((n+1)/3C3)+((n−2)/3C3)+(n+13)2(n−23).