wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

O is any point inside a rectangle ABCD. Prove that: OB2+OD2=OC2+OA2
1079397_d28e1520b27f437da2fb77e24b45c328.png

Open in App
Solution

In OPD,OD2=OP2+PD2(1)
In OQB,OB2=OQ2+QB2(2)
(1)+(2)OB2+OD2=OP2+OQ2+PD2+QB2=OP2+OQ2+CQ2+AP2
In OCQ,OQ2+CQ2=OC2
In OPA,OP2+PA2=OA2
OB2+OD2=OC2+OA2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties of Special Parallelograms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon