Given : ∠OAB = 20°, ∠OCB = ∠55°
To find : ∠BOC = ? and ∠AOC = ?
Proof :
Join AC, OA = OB [radius of circle]
⇒ ∠OAB = ∠OBA = 20º
Now, As OC = OB [radii of circle]
∴ ∠OCB = ∠OBC [Angle opposite to equal sides are equal]
∠OBC = ∠OBA + ∠ABC
∠ABC = ∠OBC – ∠OBA = 55º – 20º = 35º
and ∠AOC = 2∠ABC = 2(35º) = 70º [Angle subtended by an arc at centre is twice the angle subtended by it on any other part on the circle]
Now, In △AOB
∠AOB + ∠OAB + ∠OBA = 180º
∠AOC + ∠BOC + ∠OAB + ∠OBA = 180º
70º + ∠BOC + 20º + 20º = 180º
⇒ ∠BOC = 70º.