wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

O is the centre of the circle having radius 5 cm. AB and AC are two chords such that AB = AC = 6 cm. If OA meets BC at M, then OM =

A
3.6 cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1.4 cm
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2 cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3 cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 1.4 cm
GivenOisthecentreofacircle.AB=AC=6cmarechords.AOisjoinedandextendedtomeetBCatM.TofindoutthelengthofOM=?SolutionWejoinOB&OC.Weconsiderfig.I.LetOM=x.i.eAM=AO+x=(5+x)cm.AlsoletBM=ycm.NowbetweenΔAOC&ΔAOBwehaveOA=OB=OC(radiiofthesamecircle)&AB=AC=6cm.BySSStestΔAOCΔAOBOAC=OAB.AgainbetweenΔAMC&ΔAMBwehaveAB=AC,AMcommonside,OAC=OAB.ΔAMCΔAMBAMC=AMB=90o(linearpair).SoΔAMBisarightonewithABashypotenuse.ByPythagorastheorem,wegetAM2=AB2BM2(5+x)2=62y2x2+y2=1110x......(i).AlsoΔOMBisaisarightonewithOBashypotenuse.ByPythagorastheorem,wegetOM2=OB2BM2x2=52y2x2+y2=25......(i)........(ii)Comparing(i)&(ii),wehave1110x=25x=1.4cm.ThenegativesignshowsAO>AM.SoweconsiderfigII.HereAM=(5x)cm(i)becomesx2+y2=11+10x.So,comparingthisequationwith(ii)andsolvingsimulteneusly,wegetx=1.4cm.OM=1.4cm.ansOptionB.
309425_244502_ans.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Chord Properties of Circles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon