O is the centre of the circle having radius 5 cm. AB and AC are two chords such that AB = AC = 6 cm. If OA meets BC at M, then OM =
A
3.6 cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1.4 cm
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2 cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3 cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B 1.4 cm Given−Oisthecentreofacircle.AB=AC=6cmarechords.AOisjoinedandextendedtomeetBCatM.Tofindout−thelengthofOM=?Solution−WejoinOB&OC.Weconsiderfig.I.LetOM=x.i.eAM=AO+x=(5+x)cm.AlsoletBM=ycm.NowbetweenΔAOC&ΔAOBwehaveOA=OB=OC(radiiofthesamecircle)&AB=AC=6cm.∴BySSStestΔAOC≅ΔAOB⟹∠OAC=∠OAB.AgainbetweenΔAMC&ΔAMBwehaveAB=AC,AMcommonside,∠OAC=∠OAB.∴ΔAMC≅ΔAMB⟹∠AMC=∠AMB=90o(linearpair).SoΔAMBisarightonewithABashypotenuse.∴ByPythagorastheorem,wegetAM2=AB2−BM2⟹(5+x)2=62−y2⟹x2+y2=11−10x......(i).AlsoΔOMBisaisarightonewithOBashypotenuse.∴ByPythagorastheorem,wegetOM2=OB2−BM2⟹x2=52−y2⟹x2+y2=25......(i)........(ii)Comparing(i)&(ii),wehave11−10x=25⟹x=−1.4cm.ThenegativesignshowsAO>AM.SoweconsiderfigII.HereAM=(5−x)cm∴(i)becomesx2+y2=11+10x.So,comparingthisequationwith(ii)andsolvingsimulteneusly,wegetx=1.4cm.∴OM=1.4cm.ans−OptionB.