Question

# $$O$$  is the centre of the circle with radius  $$5cm.$$  Chords  $$AB$$  and  $$C D$$  are parallel.  $$A B = 6 cm$$  and  $$C D = 8cm.$$  If  $$P Q$$  is distance between  $$A B$$  and  $$C D ,$$  then find  $$PQ.$$

Solution

## $$Applying\, \, Pythagoras\, \, theorem\, \, in \\ \, \angle AOP\, \, and\, \, \Delta COQ$$$$\\ In\, \, \angle AOP, \\ A{ O^{ 2 } }=A{ P^{ 2 } }+P{ O^{ 2 } } \\ \Rightarrow A{ O^{ 2 } }={ \left( { A{ B^{ 2 } } } \right) ^{ 2 } }+P{ O^{ 2 } } \\ { \left( 5 \right) ^{ 2 } }={ \left( 4 \right) ^{ 2 } }+{ x^{ 2 } } \\ \Rightarrow 25-16={ x^{ 2 } } \\ \therefore x=\sqrt { 9 } =3\, \, cm$$$$\\ In\, \, \, \Delta COQ, \\ C{ O^{ 2 } }=O{ Q^{ 2 } }+C{ Q^{ 2 } } \\ \Rightarrow C{ O^{ 2 } }=O{ Q^{ 2 } }+{ \left( { C{ D^{ 2 } } } \right) ^{ 2 } } \\ \Rightarrow 25-9={ y^{ 2 } } \\ \Rightarrow y=\sqrt { 16 } =4\, \, cm$$$$\\ Therefore\, \, ,PQ=PO+OQ=3+4=7\, \, cm$$Mathematics

Suggest Corrections

0

Similar questions
View More

People also searched for
View More