The correct option is C
CM2=OC2+OM2
ON < OM (Given)
⇒(ON)2<(OM)2⇒–(ON)2>–(OM)2⇒(OA)2–(ON)2>(OC)2–(OM)2 (∵OA=OC)⇒(AN)2>(CM)2 (By Pythagoras theorem) ⇒AN>CM…..(i) Multiplying (i) by 2, we get2AN>2CM
Since, the perpendicular from the centre of a circle to a chord bisects the chord.
∴2AN=ABand2CM=CD⇒AB>CD…..(ii)
Now, in ΔOCM, by Pythagoras theorem,
(OC)2=(OM)2+(CM)2⇒(OC)2+(OM)2=2(OM)2+(CM)2≠(CM)2…..(iii)Thus, CM2≠OC2+OM2
Hence, the correct answer is option (c).