O is the circumcentre of △ABC and R1,R2,R3 are respectively, the radii of the circumcircles of the triangles OBC, OCA, and OAB. Prove that aR1+bR2+cR3=abcR3
Open in App
Solution
If O is the circumcentre of ΔABC, then
OA=OB=OC=R
Let R1,R2 and R3 be circumradii of ΔOBC,ΔOCA and ΔOAB, respectively.
InΔOBC,2R1=asin2A⇒aR1=2sin2A Similarly, aR2=2sin2B and aR3=2sin2C⇒aR1+bR2+cR3=2(sin2A+sin2B+sin2C)=8sinAsinBsinC=8a2Rb2Rc2R=abcR3