O is the orthocentre of △ABC. If ∠BAC=70∘, then ∠BOC=
110∘
Since, AD, BE and CF are altitudes.
⇒AD⊥BC, BE⊥AC and CF⊥AB
In quadrilateral, AFOE:
∠AFO=90∘, ∠AEO=90∘ and ∠FAE=70∘ [Given]
∠AFO+∠AEO+∠FAE+∠FOE=360∘ [Sum of the angles of a quadrilateral is 360∘]
⇒ 90∘ + 90∘ + 70∘ + ∠FOE = 360∘
⇒∠FOE =360∘ - 90∘- 90∘ - 70∘ = 110∘
Now, ∠FOE and ∠BOC are vertically opposite angles.
⇒∠FOE=∠BOC
⇒∠BOC=110∘