The correct option is C (n2−n+1)+(n2−n+3)+(n2−n+5)+...+(n2+n−1)
Given
23=3+5,33=7+9+11,43=13+15+17+19
⇒23=(22−1)+(22+1),33=(32−2)+(32)+(32+2),43=(42−3)+(42−1)+(42+1)+(42+3)
or 23=(22−2+1)+(22−2+3),33=(32−3+1)+(32−3+3)+(32−3+5),43=(42−4+1)+(42−4+3)+(42−4+5)+(42−4+7)
Thus, n3=(n2−n+1)+(n2−n+3)+(n2−n+5)+...+(n2−n+(2n−1))
∴C is correct.