The given information is: u=f(r), r2=x2+y2
So, ⇒r=√x2+y2
Taking partial differentiation with respect to x, y one at a time.
⇒∂u∂x=f′(r).x√x2+y2
⇒∂u∂y=f′(r).y√x2+y2
Again differentiating w.r.t to x, y one at a time.
⇒∂2u∂x2=f′(r).√x2+y2−x2√x2+y2x2+y2+f′′(r).x√x2+y2.x√x2+y2
⇒∂2u∂x2=f′(r).y2(x2+y2)3/2+f′′(r).x2x2+y2
⇒∂2u∂y2=f′(r).√x2+y2−y2√x2+y2x2+y2+f′′(r).y√x2+y2.y√x2+y2
⇒∂2u∂y2=f′(r).x2(x2+y2)3/2+f′′(r).y2x2+y2
Adding all we get,
⇒∂2u∂x2+∂2u∂x2=f′(r).x2+y2(x2+y2)3/2+f′′(r).x2+y2x2+y2
⇒∂2u∂x2+∂2u∂x2=f′(r).1√x2+y2+f′′(r)
⇒∂2u∂x2+∂2u∂x2=f′(r)r+f′′(r)
Now looking into the reason part we have,
u=f(r) and r2=x2+y2+z2
So, r=√x2+y2+z2
Taking partial differentiation with respect to x, y and z one at a time.
⇒∂u∂x=f′(r)x√x2+y2+z2
⇒∂u∂y=f′(r)y√x2+y2+z2
⇒∂u∂z=f′(r)z√x2+y2+z2
Again differentiating w.r.t to x, y and z one at a time.
⇒∂2u∂x2=f′(r).√x2+y2+z2−x2√x2+y2+z2x2+y2+z2+f′′(r).x√x2+y2+z2.x√x2+y2+z2
⇒∂2u∂x2=f′(r).z2+y2(x2+y2+z2)3/2+f′′(r).x2x2+y2+z2
⇒∂2u∂y2=f′(r).√x2+y2+z2−y2√x2+y2+z2x2+y2+z2+f′′(r).y√x2+y2+z2.y√x2+y2+z2
⇒∂2u∂y2=f′(r).z2+x2(x2+y2+z2)3/2+f′′(r).y2x2+y2+z2
⇒∂2u∂z2=f′(r).√x2+y2+z2−y2√x2+y2+z2x2+y2+z2+f′′(r).y√x2+y2+z2.y√x2+y2+z2
⇒∂2u∂z2=f′(r).x2+y2(x2+y2+z2)3/2+f′′(r).z2x2+y2+z2
Adding all these we get,
⇒∂2u∂x2+∂2u∂y2+∂2u∂z2=f′(r).2(x2+y2+z2)(x2+y2+z2)3/2+f′′(r).x2+y2+z2x2+y2+z2
⇒∂2u∂x2+∂2u∂y2+∂2u∂z2=f′(r).2√x2+y2+z2+f′′(r)
⇒∂2u∂x2+∂2u∂y2+∂2u∂z2=f′(r).2r+f′′(r)
So, neither I or II are correct.