Given : x=rcosθy=rsinθ
xr=cosθyr=sinθ
cosθ=xrsinθ=yr
θ=cos−1(xr)θ=sin−1(yr)
Differentiate partially w.r.t ′x′ and ′y′
∂θ∂x=−1√1−(xr)2×1r∂θ∂y=−1√1−(yr)2×1r
=−√r2√r2−x2×1r=−√r2√r2−y2×1r
=−1√r2−x2=1√r2−y2
Differentiate the equation below partially again with ′x′ and ′y′
∂θ∂x=−1√r2−x2∂θ∂y=1√r2−y2
∂2θ∂x2=−12√r2−x2×−2x∂2θ∂y2=1√r2−y2×−2y
=1√r2−x2=−1√r2−y2
So the given statements are :
I:∂2θ∂x2+∂2θ∂y2=0
⇒1√r2−x2−1√r2−y2
Substitute 'x' and 'y' with rcosθ and rsinθ
⇒1√r2−r2cos2θ−1√r2−r2sin2θ
=1√r2(1−cos2θ)−1√r2(1−sin2θ)
=1r√sin2θ−1r√cos2θ
=1rsinθ−1rcosθ=0.