Observe the pattern given below,
The sum of terms up to nth position will be given by the expression:
n(n+1)2
Let S = 1 + 2 + 3 +.............. + (n-1) + n [Eqn.1]
S = n + (n-1) + (n-2) + ........... + 2 + 1 [Eqn.2]
Adding Eqn.1 and 2, we get,
2S = (n+1) + (n+1) + (n+1) + (n+1) + ........... + (n+1)
Here, (n+1) is added 'n' times
2S = n × (n+1)
S= n(n+1)2