Polynomial 3x4+6x3−2x2−10−5 iftwoitszerosare√53and−√53x=√53andx=−√53(x+√53)(x−√53)=x2−53⇒3x2−5
∴3x2+6x3−2x2−10x−5Apply division algorithm to the polynomial and 3x2−53x2+0−5x2
- +...........................
6x3+3x2−10x−5 6x3+0−10x
- + ..............
6x3+3x2−10x−5 6x3+0−10xFirst term of quotient is 3x43x2=x2
Second term of quotient is
6x33x2=2x
Third term of quotient is 3x23x2=1 ∴3x4+6x3−2x2−10x−5=(3x2−5)(x2+2x+1)+0 ∴Quotient=x2+2x+1=(x+1)2∴x=−1and−1 ∴∴Zeroesof(x+1)2are−1,−1√53and√53