Here a=log3 and b=log 7 is given and f(x)=ex
Function f(x) is continuous in interval [log3,log5] of set R. We devide interval [log3,log5] in n sub intervals with length of each intervals h=b−an
∴h=log7−log3n
∴nh=log(73)
Ans As n→∞ then h→0
Here f(x)=ex
∴f(a+ih)=ea+ih
=ea⋅eih
=elog3e⋅eih
=3eih
Now n∑i=1f(a+ih)
=n∑i=13eih
=3[eh+e2h+e3h+...+enh]
Here first term of geometric series a=eh
And common ratio r=eh>1
∴ Required sum =a(rh−1r−1)
=eh(enh−1eh−1)
∴n∑i=1f(a+ih)=3[eh(enh−1)eh−1]
∴ Limit of sum =limh→0hn∑r=1f(a+ih)
=limh→03h[eh(enh−1)eh−1]
=3⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣limh→0eh⎛⎜
⎜⎝elog⎛⎝73⎞⎠−1⎞⎟
⎟⎠(eh−1h)⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
=3(e0)(7/3−1)logee
=3(7−33) (∵loge=1)
=3(4)3
=4
∴ Required limit if sum =4.