Given, y=Acos(logx)+Bsin(logx)
Differentiating w.r to x, we get
dydx=−Asin(logx)×1x+Bcos(logx)×1x
xdydx=−Asin(logx)+Bcos(logx)
Again differentiating, we get
xd2ydx2+dydx=−Acos(logx)×1x−Bsin(logx)×1x
x2d2ydx2+xdydx=−[Acos(logx)+Bsin(logx)]
x2d2ydx2+xdydx=−y
x2d2ydx2+xdydx+y=0