As (x−h)2+(y−k)2=r2 is the circle with centre at (h, k) and radius of r.
So, (x−0)2+(y−b)2=r2, where r2=(a−0)2+(0−b)2=a2+b2
⇒ x2+y2−2by+b2=a2+b2 ⇒ x2+y2−2by=a2 ...(i)
∴ 2x+2ydydx−2bdydx=0 ⇒ b=x+yy′y′
Substituting value of b in (i), x2+y2−2(x+yy′y′)y=a2
⇒ y′(x2+y2)−2xy−2y2y′=a2y′ ⇒ y′(x2+y2−a2−2y2)−2xy=0
That is, (x2−y2−a2)dydx−2xy=0 is the required differential equation.