The correct option is A 3y′(y′′)2−y′′′[1+(y′)2]=0
Differentiation, we get,
⇒2x+2yy′+2g+2fy′=0
Again differentiating,
⇒1+(y′)2+yy′′+fy′′=0 ........(i)
Again differentiating,
⇒2(y′)y′′+y′y′′+yy′′′+fy′′′=0
⇒3y′y′′+y′′′[y−1y′′−(y′)2y′′−y]=0 (from (i))
⇒3y′(y′′)2−y′′′[1+(y′)2]=0