∫sinnx=∫sinn−1xsinx
=∫sinn−1xd(−cosx)
=sinn−1x×(−cosx)−∫−cosx(n−1)sinn−2xcosxdx
=−sinn−1xcosx+∫cos2x(n−1)sinn−2xdx
=−sinn−1xcosx+(n−1)intsinn−1x(1−sin2x)dx
=−sinn−1xcosx+(n−1)[∫sinn−2xdx−∫sinnxdx]
So In=−sinn−1xcosx+(n−1)[In−2−In]
(n−1)In+In=−sinn−1xcosx+(n−1)In−2
nIn=−sinn−1xcosx+(n−1)In−2
In=−sinn−1xcosxn+(n−1)In−2n
I5=−sin4xcosx5+4I35
I5=−sin4xcosx5+45(−sin2xcosx3+23I1)
I5=−sin4xcosx5+45(−sin2xcosx3−23cosx)+c