wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Obtain the reduction formula for In=sinnxdx for an integer n2 and hence find sin5xdx.

Open in App
Solution

sinnx
=sinn1xsinx
=sinn1xd(cosx)
=sinn1x×(cosx)cosx(n1)sinn2xcosxdx
=sinn1xcosx+cos2x(n1)sinn2xdx
=sinn1xcosx+(n1)intsinn1x(1sin2x)dx
=sinn1xcosx+(n1)[sinn2xdxsinnxdx]
So In=sinn1xcosx+(n1)[In2In]
(n1)In+In=sinn1xcosx+(n1)In2
nIn=sinn1xcosx+(n1)In2
In=sinn1xcosxn+(n1)In2n
I5=sin4xcosx5+4I35
I5=sin4xcosx5+45(sin2xcosx3+23I1)
I5=sin4xcosx5+45(sin2xcosx323cosx)+c


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 7
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon