Let In=∫sinnxdx
⇒In=∫sinx⋅sinn−1xdx
Integrating by parts, we have
In=−cosx(sinn−1x)−∫(−cosx)(n−1)sinn−2xcosxdx
In=−sinn−1xcosx+(n−1)∫cos2xsinn−2xdx
In=−sinn−1xcosx+(n−1)∫sinn−2x(1−sin2x)dx
In=−sinn−1xcosx+(n−1)∫sinn−2xdx−(n−1)∫sinnxdx
In=−sinn−1xcosx+(n−1)∫sinn−2xdx−(n−1)In
In+(n−1)In=−sinn−1xcosx+(n−1)∫sinn−2xdx
In=−1nsinn−1xcosx+(n−1)n∫sinn−2xdx
Hence ∫sinnxdx=−1nsinn−1xcosx+(n−1)n∫sinn−2xdx.
Now,
∫sin4xdx
=−14sin3xcosx+34∫sin2xdx
=−14sin3xcosx+34∫1−cos2x2dx
=−14sin3xcosx+38∫dx−38∫cos2xdx
=−14sin3xcosx+38x−38(12sin2x)+C
=−14sin3xcosx+38x−316(sin2x)+C