wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Obtain the reduction formula for sinnxdx an integer n2 and deduce the value of sin4xdx.

Open in App
Solution

Let In=sinnxdx
In=sinxsinn1xdx
Integrating by parts, we have
In=cosx(sinn1x)(cosx)(n1)sinn2xcosxdx
In=sinn1xcosx+(n1)cos2xsinn2xdx
In=sinn1xcosx+(n1)sinn2x(1sin2x)dx
In=sinn1xcosx+(n1)sinn2xdx(n1)sinnxdx
In=sinn1xcosx+(n1)sinn2xdx(n1)In
In+(n1)In=sinn1xcosx+(n1)sinn2xdx
In=1nsinn1xcosx+(n1)nsinn2xdx
Hence sinnxdx=1nsinn1xcosx+(n1)nsinn2xdx.
Now,
sin4xdx
=14sin3xcosx+34sin2xdx
=14sin3xcosx+341cos2x2dx
=14sin3xcosx+38dx38cos2xdx
=14sin3xcosx+38x38(12sin2x)+C
=14sin3xcosx+38x316(sin2x)+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Reduction Formulae
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon