Given t18=52 and t39=148
We know that, tn=a+(n−1)d
Here, t18=52
∴ a+(18−1)d=52
∴ a+17d=52..........(i)
Also, t39=148
∴ a+(39−1)d=148
∴ a+38d=148.......(ii)
Adding equation (i) and (ii) we get
a+17d=52
a+38d=148
-----------------------
2a+55d=200.........(iii)
We know that
Sn=n2[2a+(n−1)d]
S56=562[2×a+(56−1)d]
∴S56==28(2a+55d)
∴S56=28×200
∴S56=5600 [From iii)]
∴ The sum of the 56 term of an A.P is 5600