1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
nth Term of an AP
Of a, l, d,...
Question
Of
a
,
l
,
d
,
n
,
S
n
determine the ones which are missing for the following arithmetic progressions :
(
i
)
a
=
−
2
,
d
=
5
,
S
n
=
568
(
i
i
)
l
=
8
,
n
=
8
,
S
8
=
−
20
(
i
i
)
d
=
2
3
,
l
=
10
,
n
=
20
(
i
v
)
a
=
2
,
l
=
29
,
S
n
=
155
(
v
)
a
=
8
,
l
=
62
,
S
n
=
210
(
v
i
)
l
=
4
,
d
=
2
,
S
n
=
−
14
Open in App
Solution
i
)
a
=
−
2
,
d
=
5
,
S
n
=
568
S
n
=
n
2
(
2
a
+
(
n
−
1
)
d
)
=
568
⇒
n
2
(
−
4
+
(
n
−
1
)
5
)
=
568
⇒
n
(
5
n
−
9
)
=
1136
⇒
5
n
2
−
9
n
−
1136
=
0
⇒
n
=
9
±
√
81
+
4
×
5
×
1136
2
×
5
=
9
±
151
10
=
16
−
14.2
n
=
16
l
=
a
+
(
n
−
1
)
d
=
−
2
+
15
×
5
+
23
i
i
)
l
=
8
,
n
=
8
,
S
8
=
−
20
l
=
a
+
(
n
−
1
)
d
⇒
a
+
7
d
=
8
S
8
=
8
2
(
a
+
l
)
=
4
(
a
+
8
)
=
−
20
⇒
a
=
−
13
⇒
d
=
3
i
i
i
)
d
=
2
3
,
l
=
10
,
n
=
20
l
=
10
=
a
+
(
n
−
1
)
d
=
a
+
19
×
2
3
⇒
10
=
a
+
19
×
2
3
⇒
a
=
10
−
38
3
=
−
8
3
S
n
=
n
2
(
a
+
l
)
=
20
2
(
−
8
3
+
10
)
=
10
(
22
3
)
=
220
3
i
v
)
a
=
2
,
l
=
29
,
S
n
=
155
S
n
=
n
2
(
a
+
l
)
⇒
n
2
(
2
+
29
)
=
155
⇒
n
(
31
)
=
310
⇒
n
=
10
l
=
a
+
(
n
−
1
)
d
⇒
29
=
2
+
9
d
⇒
d
=
3
v
)
a
=
8
,
l
=
62
,
S
n
=
210
S
n
=
n
2
(
a
+
l
)
=
n
2
(
8
+
62
)
210
=
n
2
(
70
)
⇒
n
=
6
l
=
a
+
(
n
−
1
)
d
⇒
62
=
8
+
5
d
⇒
d
=
10.8
v
i
)
l
=
4
,
d
=
2
,
S
n
=
−
14
l
=
4
=
a
+
(
n
−
1
)
d
=
a
+
2
(
n
−
1
)
...(1)
S
n
=
−
14
=
n
2
(
a
+
l
)
=
n
2
(
a
+
4
)
⇒
n
(
a
+
4
)
=
−
28
...(2)
⇒
4
=
a
+
2
n
−
2
⇒
a
+
2
n
=
6
⇒
a
=
6
−
2
n
put
a
=
6
−
2
n
in ....(2)
n
(
6
−
2
n
+
4
)
=
−
28
⇒
n
(
10
−
2
n
)
=
−
28
⇒
2
n
2
−
10
n
−
28
=
0
⇒
n
2
−
5
n
−
14
=
0
⇒
(
n
+
2
)
(
n
−
7
)
=
0
⇒
n
=
−
2
,
7
⇒
n
=
7
a
=
6
−
2
n
=
6
−
14
=
−
8
Suggest Corrections
0
Similar questions
Q.
Let there be an A.P. with first term 'a', common difference 'd'. If a
n
denotes in n
th
term and S
n
the sum of first n terms, find.
(i) n and S
n
, if a = 5, d = 3 and a
n
= 50.
(ii) n and a, if a
n
= 4, d = 2 and S
n
= −14.
(iii) d, if a = 3, n = 8 and S
n
= 192.
(iv) a, if a
n
= 28, S
n
= 144 and n= 9.
(v) n and d, if a = 8, a
n
= 62 and S
n
= 210
(vi) n and a
n
, if a= 2, d = 8 and S
n
= 90.