Let the probabilities of E1, E2 and E3 be p1, p2 and p3 respectively.
Given, p1(1−p2)(1−p3)=α ⋯(1)
p2(1−p1)(1−p3)=β,
p3(1−p1)(1−p2)=γ,
and (1−p1)(1−p2)(1−p3)=p ⋯(2)
From (1) and (2),
pα=1−p1p1
Similarly, pβ=1−p2p2
and pγ=1−p3p3
(α−2β)p=αβ
⇒pβ−2pα=1 ⋯(3)
(β−3γ)p=2βγ
⇒pγ−3pβ=2 ⋯(4)
From (3) and (4), we get
pγ−6pα=5
⇒1p3−1−6p1+6=5
⇒p1p3=6