The correct option is B 0
Given, ∣∣
∣
∣∣x+ω2ω1ωω21+x1x+ωω2∣∣
∣
∣∣=0
Applying C1→C1+C2+C3
=∣∣
∣
∣∣x+ω2+ω+1ω1ω+ω2+1+xω21+x1+ω+ω2+xx+ωω2∣∣
∣
∣∣=0
=∣∣
∣
∣∣xω1xω21+xxx+ωω2∣∣
∣
∣∣=0[∵1+ω+ω2=0]
⇒=∣∣
∣
∣∣1ω11ω21+x1x+ωω2∣∣
∣
∣∣=0
Applying R2→R2−R1,R3→R3−R1
⇒x∣∣
∣
∣∣1ω10ω2−ωx0xω2−1∣∣
∣
∣∣=0
⇒x{(ω2−ω)(ω2−1)−x2}=0
⇒x=0 i.e., one value of x=0.