Part (1).
5x−4y+8=0 ……. (1)
7x+6y−9=0 ……. (2)
Comparing equation (1) and (2) to,
a1x+b1y+c1=0
a2x+b2y+c2=0
Then,
a1=5,b1=−4,c1=8
a2=7,b2=6,c2=−9
Now, we know that,
a1a2=57,b1b2=−46=−23,c1c2=8−9
a1a2≠b1b2
We have a unique solution.
Therefore, the linear equation intersect at a point.
Part (2).
9x+3y+12=0 ……. (1)
18x+6y+24=0 ……. (2)
Comparing equation (1) and (2) to,
a1x+b1y+c1=0
a2x+b2y+c2=0
Then,
a1=9,b1=3,c1=12
a2=18,b2=6,c2=24
Now, we know that,
a1a2=918=12,b1b2=36=12,c1c2=1224=12
a1a2=b1b2=c1c2
We have a infinite solution.
Therefore, the linear equation are coincident.
Part (3).
6x−3y+10=0 ……. (1)
2x−y+9=0 ……. (2)
Comparing equation (1) and (2) to,
a1x+b1y+c1=0
a2x+b2y+c2=0
Then,
a1=6,b1=−3,c1=10
a2=2,b2=−1,c2=9
Now, we know that,
a1a2=62=31,b1b2=−3−1=31,c1c2=109
a1a2=b1b2≠c1c2
We have no solution.
Therefore, the linear equation are parallel.