Let x be no. of children, y is the amount per child.
1) (x - 8) children will (y + 10) each
⇒ Total (x - 8) (y + 10) = xy
/xy−8y+10x−80=/xy
ar10x−8y=80……(1)
2) (x + 16) children will get (y - 10) each
(x + 16) (y - 10) = xy
xy + 16y - 10x - 160 = xy
- 10x + 16y = 160 ...... (2)
This linear pair of equations can be solved using matrices
Let A=[10−8−1016] (coefficients of x and y) [x].[xy] and B=[80160]
A−1=1160−80[1681010]=180[1681010]
[x]=A−1B=180[1681010][80160]=⎡⎢⎣16/80×/80+8/80×/160210/80×/80+10/80×/1602⎤⎥⎦=[16+1610+20]=[3230]
∴ x = No. of children = 32 and y = money in each child = Rs. 30