The correct option is D 1
∵ sec(90∘−θ) = cosec(θ)
∴ sec 28∘ = sec(90∘−62∘) = cosec(62∘) ---- (1)
∵ cosec(90∘−θ) = sec(θ)
∴ cosec 42∘ = cosec(90∘−48∘) = sec(48∘) ----(2)
By Trigonometric Identity,
cosec2A−cot2A=1
and, sec2A−tan2A=1
On substituting (1) and (2) in given equation,
∴ sec228∘−cot262∘cosec242∘−tan248∘
⇒ cosec262∘−cot262∘sec248∘−tan248∘
⇒ 11 [from Identities]
∴ sec228∘−cot262∘cosec242∘−tan248∘ = 1