On the Argand plane z1,z2 and z3 are respectively, the vertices of an isosceles triangle ABC with AC = BC and equal angles are θ. If z4 is the incenter of the triangle.
Then prove that (z2−z1)(z3−z1)=(1+secθ)(z4−z1)2.
Open in App
Solution
z2−z1|z2−z1|=z4−z1|z4−z1|e−iθ/2(clockwise) (1) z3−z1|z3−z1|=z4−z1|z4−z1|e−iθ/2(anticlockwise) (2) Multiplying (1) and (2), we get (z2−z1)(z3−z1)(z4−z1)2=|(z2−z1)||(z3−z1)||z4−z1|2 =(AB)(AC)(AI)2 =2(AD)(AC)(AI)2 =(AB)2(AI)2ACAD =2cos2θ2secθ=(1+cosθ)secθ Ans: 1