From Bohr's postulates, angular momentum of an electron in nth orbit is given by:Ln=nh2π
∴mevnrn=nh2π................(i)
From Coulomb's Law,
F=Q1Q24πεor2
F=e24πεor2n
as atomic number of hydrogen is 1, nucleus has only one proton
This provides the necessary centripetal force for the electron to remain in orbit.
mev2nrn=e24πεor2n..............(ii)
Substiuting value of rn from (ii) in (i), we get:
mevne24πεomev2n=nh2π
vn=e22nεoh........(iii)
Now, kinetic energy of electron is:
KEn=12mev2n
=12mee44n2ε2oh2
KEn=mee48n2ε2oh2...........(iv)
Potential energy of electron is:
PEn=−Q1Q24πεorn
=−e22πmevn4πεonh using (i)
Substituting vn from (iii), we get:
PEn=−e2me2εonh×e22nεoh
=−mee44n2ε2oh2.............(v)
Total energy is hence, given by:
En=KEn+PEn=−mee48n2ε2oh2
It can be observed that En=−KEn
Given E1=−X eV
⟹KEn=X eV